UNDER CODUCTION OF THE STORE OF THE STORE									
Name:									
Class:		Teacher:							
	Setf-Evaluation Higher Chemistry Unit 2 Nature's Chemistry								
Section	Systems	Title	Completed						
2.1	System								
2.2	ſ	arboxylic Acids	· · · · · · · · · · · · · · · · ·						
2.5	Fs:	ters, Fats & Oils	✓						
2.5	Soaps, D	etergents & Emulsions	✓						
2.6		Proteins	✓						
2.7	0>	kidation of Food	\checkmark						
2.8	Fragrances 🗸								
2.9		Skin Care	✓						

	Isomers can be drawn given the name, molecular formula or structural formula of a substance.											
	• isomers o	• isomers are compounds with same molecular formula but different structural formulae									1	
	Isomers may be in different homologous series and have different physical properties						7	1		1		
50 51	C4H8	4H ₈ C ₄ H ₈		C ₄ H ₈			C4H8	C4H8	-			
	н н н н н н н н н н-C=C-C-C-н		н Нн-С-нн 		Н—	н н С—С—н 	н Н—С н		$\overline{\mathbf{S}}$	☺	\odot	
	й й	н	Н	H-C=	<u>-</u> с−с−н Н	н—	С—С—н н н	н— <i>С—С—С</i> —н н н н	4			
	but-1-ene	but-2-e	ene	2-met	hylpropene	су	clobutane	methylcyclopropane				1
	The physical properties of compounds can be predicted by considering:											
	Presence of -OH or -NH Bonds Spatial Arrangement of Polar Covalent Bonds					1						
	-OH bonds and -NH bonds would give rise to hydrogen Polar covalent bonds in the correct arrangement gives rise to											
	bonding between molecules.					ittractions.				1		
	Solubility	Boiling Point Vold		tility	Solubility	/	Boiling Point	Volatility				
52	Hydrogen bonding would	Hydrogen Bonding	Hydroger decreases	n bonding volatility as	Polar molecules likely to me solu	more Ible in r	PD-PD attractions br nolecules closer toge	ring Closer together molecules ther are less volatile and less				
52	increase solubility	increases boiling point	eases boiling point molecules clo		oser together polar solvent		and raises b.pt.	likely to turn into a gas		(\mathbf{G})	(\Box)	\odot
55	Molecular Size of Molecules Polarities of Solute and Solvent								1			
	The bigger the molecule, the greater the number of electrons. This Polar covalent and ionic substances tend to be soluble in polar solvents.											
	Increases London disper	London dispersion forces between molecules. Non-polar compounds fend to dissolve in non-polar solvents.			on-polar solvents. Volatility	1			1			
	Solubility often	Bigger molecules have	Bigger mo	lecules are	If substance has	s polar	Bolling Folki	Volatiirty				1
	decreases as molecules	stronger LDF raising the	closer together and		groups, it is more	likely to on boiling point		on volatility				
	yer bigger	boning point	uecredses	solutiity	De Soluble IN W	uici		I	<u> </u>			──
												1
												1
L									1	I		L

76 (117) (120)	Edible fats and edible oils are esters formed from the condensation reaction between carboxylic acids and glycerol (propane-1,2,3-triol) • carboxylic acids are also known as fatty acids, usually with 16 or 18 carbons • each of the fatty acids in an edible fat/oil need not have the same formula • fatty acids chains can be saturated with no C=C double bonds (general formula -CnH2n+1) • fatty acids chains can be unsaturated with one or more C=C double bonds H H H H H H H H H H H H H H H H H H H		\odot		\odot
77 78 (112) (113)	 Edible oils have a lower melting point than edible fats. The lower melting points of oils compared to those of fats is related to the higher unsaturation of oil molecules (i.e. more C=C bonds in oils than fats) double bonds in fatty acid chains prevent oil molecules from packing closely together greater number of C=C double present, the weaker the van der Waals forces of attraction between the molecules lowering the melting point The greater the degree of unsaturation the lower the melting point 				Û
79 80	 Unsaturated compounds decolourise bromine solution quickly. bromine molecules add across the C=C double bonds by an addition reaction the greater the number of C=C double bonds in a substance the more bromine solution that will be decolourised. 		$\overline{\mbox{\scriptsize (s)}}$	٢	٢
81 (111) (115)	 Fats and oils are an essential part of a healthy diet supplies the body with a source of energy and is a more concentrated source of energy that carbohydrates essential for the transport and storage of fat-soluble vitamins in body 	1	$\overline{\ensuremath{\mathfrak{S}}}$:	٢

	Dalziel Higher Chemistry Self-Evaluation		Traffic Light		
	High School Unit 2.9 Skin Care	Page	Red	Amber	Green
114	 Ultraviolet (UV) radiation is a high-energy form of EM radiation and is present in sunlight. Exposure to UV light provides sufficient energy for bonds to be broken within molecules UV light causes sunburn and accelerates ageing of skin Sun-block applied to your skin prevents UV light reaching the skin 		\odot		٢
115	 Free radicals are atoms or molecules which have an unpaired electron. UV light breaks bonds to form free radicals free radicals are highly reactive due to this unpaired electron 		(;)	:	\odot
116 117 118	The steps involved in a free radical reaction are • Initiation • UV light generates radicals Br ₂ Homolytic fission • UV light/slow Br + Br • Propagation • A propagation reaction involves the loss of a radical, but also the formation of another radical. The reaction now has to keep going, or propagate itself Br + CH ₄ \longrightarrow CH ₃ + HBr CH ₃ + Br ₂ \longrightarrow CH ₃ Br + Br [•] • Termination • Termination involves radicals coming together to form covalent bonds. CH ₃ + Br \longrightarrow CH ₃ Br CH ₃ + CH ₃ \longrightarrow CH ₃ Br CH ₃ + Br [•] \longrightarrow CH ₃ Br CH ₃ + CH ₃ \longrightarrow CH ₃ CH ₃ Br + Br \longrightarrow Br ₂		::		٢
119	 prevents free radical chain reactions from occurring. natural free radical scavengers include: Melatonin, Vitamin E and beta-carotene free radical scavengers are added to cosmetics, food and plastics. 				\odot